

High performance graph algorithms from parallel sparse matrices

Viral Shah
University of California, Santa Barbara

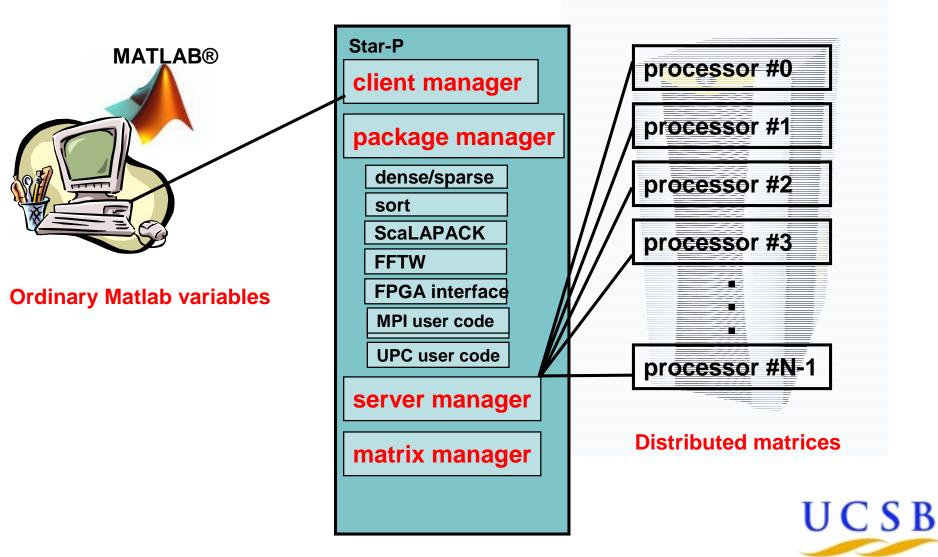
John R. Gilbert, UCSB

Steven Reinhardt, SGI

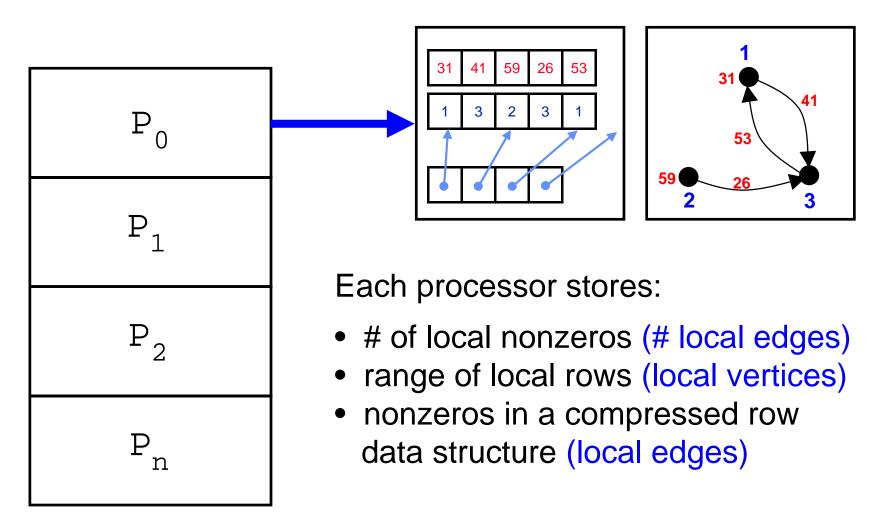
Support: DOE Office of Science, DARPA, SGI, ISC

Power method in Star-P

Star-P Architecture



Distributed sparse array



Sparse matrix operations

- A = sparse(i, j, Aij);
- [i j Aij] = find(A);
- Matrix operators: +, -, max, sum, & etc.
- matrix * vector, matrix * matrix
- Matrix indexing and concatenation

```
A(1:3, [4 5 2]) = [B(:, 7) C];
```

- A b by direct methods (SuperLU_dist) and iterative methods
- Eigensolvers (PARPACK): eigs(), svds()

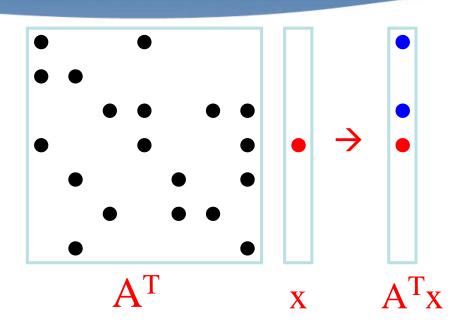
Combinatorics in Star-P

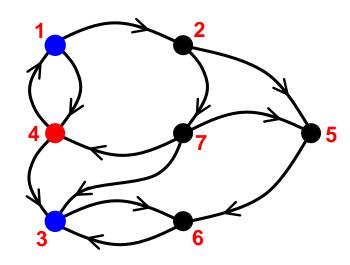
- Represent a graph as a sparse adjacency matrix
- A sparse matrix language is a good start on primitives for computing with graphs

```
Random-access indexing: A(i,j)
```

- Neighbor sequencing: find (A(i,:))
- Sparse table construction: sparse (I, J, V)
- Breadth-first search step: A * v

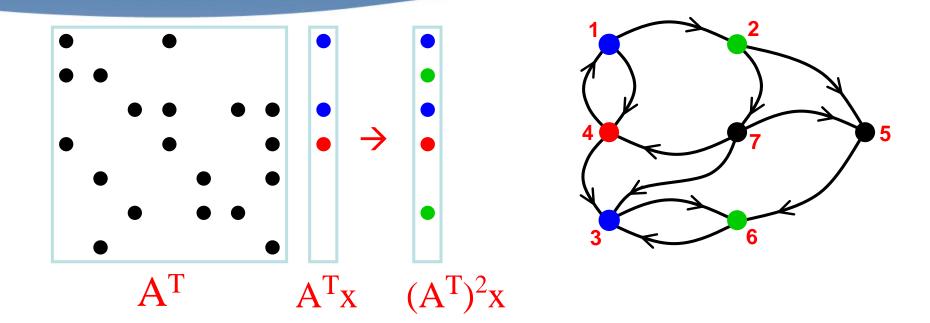
Breadth-first search: sparse mat * vec





- Multiply by adjacency matrix → step to neighbor vertices
- Efficient implementation from sparse data structures

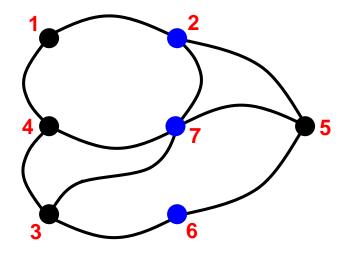
Breadth-first search: sparse mat * vec



- Multiply by adjacency matrix → step to neighbor vertices
- Efficient implementation from sparse data structures

Maximal Independent Set

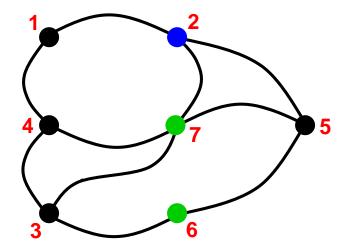
```
deg = sum(G, 2);
prob = 1 ./ (2 * deg);
select = rand (n, 1) < prob;</pre>
neigh = select & (G * select);
if ~isempty (neigh)
  % keep higher degree vertices
end
IS = [IS select];
neigh = neigh | (G * select);
remain = neigh == 0;
G = G(remain, remain);
```



Select a subset of graph vertices randomly as an initial guess of the independent set

Maximal Independent Set

```
deg = sum(G, 2);
prob = 1 ./ (2 * deg);
select = rand (n, 1) < prob;</pre>
neigh = select & (G * select);
if ~isempty (neigh)
  % keep higher degree vertices
end
IS = [IS select];
neigh = neigh | (G * select);
remain = neigh == 0;
G = G(remain, remain);
```

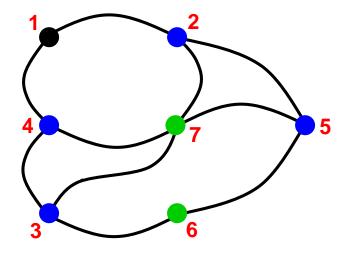


If neighbouring nodes are picked, keep the higher degree vertices.

Add selected vertices to the independent set.

Maximal Independent Set

```
deg = sum(G, 2);
prob = 1 ./ (2 * deg);
select = rand (n, 1) < prob;</pre>
neigh = select & (G * select);
if ~isempty (neigh)
  % keep higher degree vertices
end
IS = [IS select];
neigh = neigh | (G * select);
remain = neigh == 0;
G = G(remain, remain);
```



Discard neighbours of the independent set.

Iterate the same process on the remaining subgraph.

Connected components of a graph

- Sequential Matlab uses depth-first search (dmperm), which doesn't parallelize well
- Shiloach-Vishkin pointer-jumping algorithm:
 - repeat
 - Link every (super)vertex to a neighbor
 - Shrink each tree to a supervertex by pointer jumping
 - until no further change
- Hybrid SV / search method under construction
- Other possible graph kernels:
 - Shortest-path search (after Husbands, LBNL)
 - Bipartite matching (after Riedy, UCB)
 - Strongly connected components (after Pinar, LBNL)

SSCA#2: "Graph Analysis"

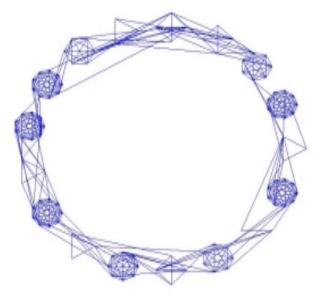
QuickTimeTM and a Sorenson Video 3 decompressor are needed to see this picture.

- Fine-grained, irregular data access
- Searching and clustering
- Goal is scaling to very large graphs
- Graphs specified by a scalable data generator

Four computational kernels:

- Kernel 1: Build graph data structure
- Kernel 2: Search by edge labels
- Kernel 3: Extract subgraphs
- Kernel 4: Partition into clusters

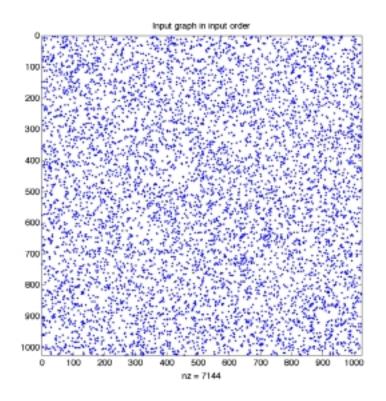
SSCA#2: Graph Statistics



- Scalable data generator (Spec 1.1)
- Input data is edge triples < i, j, weight(i,j) >
- Many tight clusters, loosely interconnected
- Vertex and edge orders permuted randomly

Scale	#Vertices	#Cliques	#Edges Directed	#Edges Undirected
10	1,024	186	13,212	3,670
15	32,768	2,020	1,238,815	344,116
20	1,048,576	20,643	126,188,649	35,052,403
25	33,554,432	207,082	12,951,350,000	3,597,598,000
30	1,073,741,824	2,096,264	1,317,613,000,000	366,003,600,000

Concise SSCA#2 in Star-P



Kernel 1: Construct graph data structures

• Graphs are dsparse matrices, created by sparse()

Kernels 2 and 3

Kernel 2: Search by edge labels

- About 12 lines of executable Matlab or Star-P
- Essentially uses find()

Kernel 3: Extract subgraphs

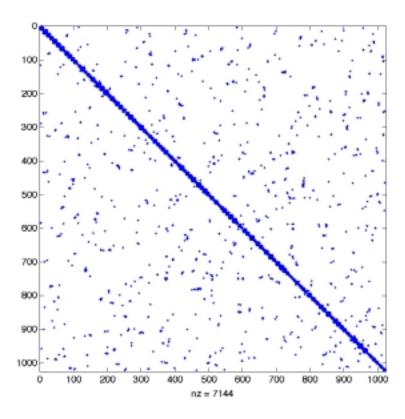
- Returns subgraphs consisting of vertices and edges within fixed distance of given starting vertices
- Sparse matrix-matrix multiplication for several simultaneous breadth-first searches
- About 25 lines of executable Matlab or Star-P

Kernel 4: Vertex clustering

- Grow local clusters from many seeds in parallel
- Breadth-first search by sparse matrix * matrix

```
% Grow each seed to vertices
% reached by at least k
% paths of length 1 or 2

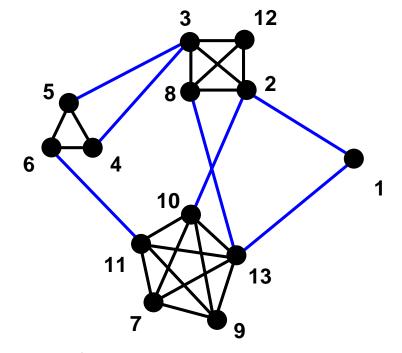
C = sparse(seeds,1:ns,1,n,ns);
C = A * C;
C = C + A * C;
C = C >= k;
```



Kernel 4: Peer pressure

Steps in a peer pressure algorithm:

- 1. Vote for a leader
- 2. Collect neighbour votes
- 3. Vote for a new leader
 (based on neighbour votes)



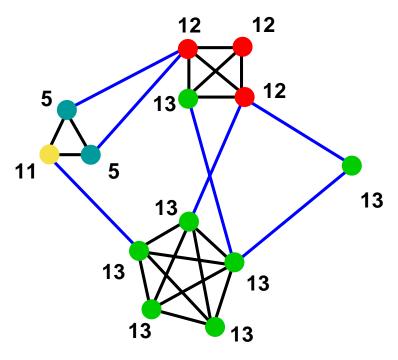
- Quality of clustering depends on the choice of algorithms used for the different steps above.
- The set of possible leaders should be small. MIS is a good choice. For SSCA#2, max works equally well.
- Neighbour votes maybe combined using different weights.
- All versions of kernel4 are about 25 lines of code.

Kernel 4: Peer pressure

```
[ign leader] = max (G, [], 2);

S = G *
    sparse(1:n,leader,1,n,n);

[ign leader] = max (S, [], 2);
```



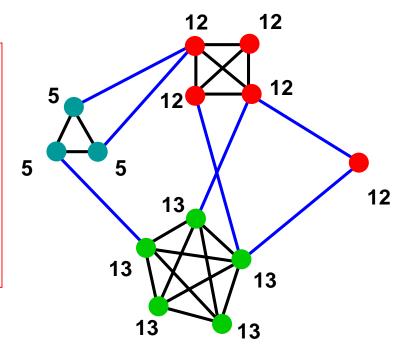
- Every vertex votes for its highest numbered neighbour as its leader - No communication is required
- The size of the leader set is approximately the number of clusters - which is small relative to the number of nodes
- Discovers original graph structure right away

Kernel 4: Peer pressure

```
[ign leader] = max (G, [], 2);

S = G *
    sparse(1:n,leader,1,n,n);

[ign leader] = max (S, [], 2);
```



- Matrix multiplication gathers neighbour votes
- Every nonzero in each row corresponds to a leader Its value denotes the number of neighbour votes for that leader
- >95% of the original graph structure is recovered at this point
- Very small clusters may attach themselves to nearby clusters

Scaling up

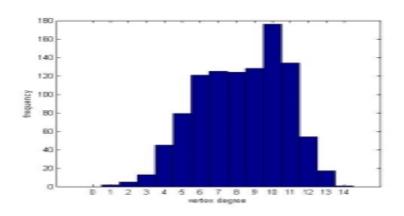
Recent runs of cSSCA#2 on SGI Altix (up to 128 processors):

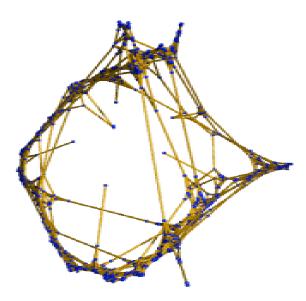
- Have run the entire benchmark on graphs with 2²⁶ = 67 million vertices, 890 million directed edges, 247 million undirected edges (ver 0.9 of the spec)
- Benchmarking in progress for ver 1.1 of the spec
- Have built graphs with 400 million vertices and 4 billion edges
- Timings scale well for large graphs,
 - 2x problem size → 2x time
 - 2x problem size & 2x processors → same time

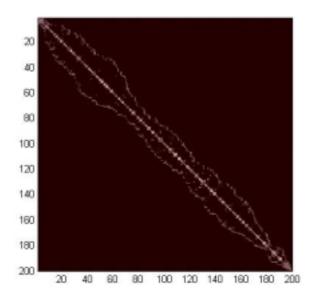
Toolbox for Graph Analysis and Pattern Discovery

Layer 1: Graph Theoretic Tools

- Graph operations
- Graph generators
- Graph partitioning and clustering
- Graph theoretic preconditioners
- Visualization and graphics
- Scan and combining operations
- Utilities







Thank You

Questions.

Toolbox Status

- Graph algorithms: independent sets, connected components, strongly connected components, shortest paths, bipartite matching, graph coloring, spanning trees
- Graph partitioning and mesh generation: Simple 2d and 3d mesh generators, stencil operators, spectral partitioners, geometric partitioners, multilevel partitioners (ParMETIS hookup)
- **Solution of linear systems**: Preconditioned iterative methods, support graph preconditioners, algebraic multigrid, sparse approximate inverse preconditioners

Extra Slides

